SPANSION ${ }^{\text {™ }}$ MCP

Data Sheet

September 2003

This document specifies SPANSION ${ }^{T M}$ memory products that are now offered by both Advanced Micro Devices and Fujitsu. Although the document is marked with the name of the company that originally developed the specification, these products will be offered to customers of both AMD and Fujitsu.

Continuity of Specifications

There is no change to this datasheet as a result of offering the device as a SPANSION ${ }^{\top M}$ product. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary.

Continuity of Ordering Part Numbers

AMD and Fujitsu continue to support existing part numbers beginning with "Am" and "MBM". To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local AMD or Fujitsu sales office for additional information about SPANSION ${ }^{\text {TM }}$ memory solutions.

Stacked MCP (Multi-Chip Package) FLASH MEMORY \& FCRAM

 CMOS
32M (×16) FLASH MEMORY \& 16M (×16) SRAM Interface FCRAM

MB84VD22386EJ/VD22387EJ/VD22388EJ-85/90 MB84VD22396EJ/VD22397EJ/VD22398EJ-85/90

■ FEATURES

- Power Supply Voltage of 2.7 V to 3.1 V for FCRAM
- Power Supply Voltage of 2.7 V to 3.3 V for Flash
- High Performance

85 ns maximum access time (Flash)
85 ns maximum access time (FCRAM)

- Operating Temperature
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Package 71-ball BGA
(Continued)
PRODUCT LINE-UP

	Flash Memory	FCRAM
Power Supply Voltage (V)	Vccf $^{*}=2.7$ to 3.3	Vccs $^{*}=2.7$ to 3.1
Max Address Access Time (ns)	85	85
Max $\overline{\text { CE Access Time (ns) }} \quad 85$	85	
Max $\overline{\text { OE Access Time (ns) }}$	35	50

*: Both $\mathrm{V}_{\mathrm{ccf}}$ and $\mathrm{V}_{\mathrm{ccs}}$ must be the same level when either part is being accessed.

[^0]
MB84VD22386/387/388EJ-85/90/MB84VD22396/397/398EJ-85/90

(Continued)

1. FLASH MEMORY

- Simultaneous Read/Write Operations (Dual Bank)

Multiple devices available with different bank sizes
Host system can program or erase in one bank, then immediately and simultaneously read from the other bank
Zero latency between read and write operations
Read-while-erase
Read-while-program

- Minimum 100,000 Write/Erase Cycles
- Sector Erase Architecture

Eight 4 K words and sixty three 32 K words.
Any combination of sectors can be concurrently erased. The devices also support full chip erase.

- Boot Code Sector Architecture

MB84VD22386EJ/VD22387EJ/VD22388EJ: Top sector
MB84VD22396EJ/VD22397EJ/VD22398EJ: Bottom sector

- Embedded Erase ${ }^{\text {TM }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM }}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit Feature for Detection of Program or Erase Cycle Completion
- Ready-Busy Output (RY/ $\overline{\mathrm{BY}}$)

Hardware method for detection of program or erase cycle completion

- Automatic Sleep Mode

When addresses remain stable, automatically switch themselves to low power mode.

- Hidden ROM (Hi-ROM) Region

64 Kbyte of Hi -ROM, accessible through a new "Hi-ROM Enable" command sequence
Factory serialized and protected to provide a secure electronic serial number (ESN)

- WP/ACC Input Pin

Allows protection of boot sectors at V_{LL}, regardless of sector protection/unprotection status
(MB84VD22386EJ/VD22387EJ/VD22388EJ: SA69,SA70
MB84VD22396EJ/VD22397EJ/VD22398EJ: SA0,SA1)
Allows removal of boot sector protection at $\mathrm{V}_{\boldsymbol{\prime}}$.
At VACC, program time will reduce by 40%.

- Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device

- Please Refer to "MBM29DL32XTE/BE" Data Sheet in Detailed Function

2. FCRAM

- Power Dissipation

Operating: 20 mA Max
Standby: $70 \mu \mathrm{~A}$ Max
Power Down: $10 \mu \mathrm{~A}$ Max

- Power Down Control by CE2s
- Byte Write Control: $\overline{\mathrm{LB}}\left(\mathrm{DQ}_{7}-\mathrm{DQ}_{0}\right), \overline{\mathrm{UB}}\left(\mathrm{DQ}_{15}-\mathrm{DQ}_{5}\right)$
- 4 Words Address Access Capability
(Top View)
Marking side

(BGA-71P-M02)

■ PIN DESCRIPTIONS

Pin Name	Input/Output	Function
A_{19} to A_{0}	I	Address Inputs (Common)
A_{20}	I	Address Input (Flash)
DQ_{15} to DQ ${ }_{0}$	I/O	Data Inputs/Outputs (Common)
$\overline{\mathrm{CEf}}$	I	Chip Enable (Flash)
$\overline{\mathrm{CE} 1 \mathrm{~s}}$	I	Chip Enable (FCRAM)
$\mathrm{CE2s}$	I	Chip Enable (FCRAM)
$\overline{\mathrm{OE}}$	I	Output Enable (Common)
$\overline{\mathrm{WE}}$	I	Write Enable (Common)
RY/ $\overline{\mathrm{BY}}$	O	Ready/Busy Outputs (Flash) Open Drain Output
$\overline{\mathrm{UBs}}$	I	Upper Byte Control (FCRAM)
$\overline{\mathrm{LBs}}$	I	Lower Byte Control (FCRAM)
$\overline{\mathrm{RESET}}$	I	Hardware Reset Pin/Sector Protection Unlock (Flash)
$\overline{\mathrm{WP} / A C C ~}$	I	Write Protect / Acceleration (Flash)
N.C.	-	No Internal Connection
Vss	Power	Device Ground (Common)
Vccf	Power	Device Power Supply (Flash)
Vccs	Power	Device Power Supply (FCRAM)

BLOCK DIAGRAM

■ DEVICE BUS OPERATION

Operation *1,*2	$\overline{\text { CEf }}$	$\overline{\text { CE1s }}$	CE2s	$\overline{O E}$	WE	$\overline{\text { LBs }}$	$\overline{\text { UBs }}$	DQ ${ }_{7}$ to DQ ${ }_{0}$	DQ15 to DQ8	RESET	$\overline{\mathrm{WP}} / \mathrm{ACC}$
Full Standby	H	H	H	X	X	X	X	High-Z	High-Z	H	X
Output Disable *3	H	L	H	H	H	X	X	High-Z	High-Z	H	X
	L	H	H	H	H	X	X	High-Z	High-Z		
Read from Flash *4	L	H	H	L	H	X	X	Dout	Dout	H	X
Write to Flash	L	H	H	H	L	X	X	Din	Din	H	X
Read from FCRAM *5	H	L	H	L	H	X	X	Dout	Dout	H	X
Write to FCRAM	H	L	H	H	L	L	L	Din	Din	H	X
						H	L	High-Z	Din		
						L	H	Din	High-Z		
Temporary Sector Group Unprotection *6	X	X	X	X	X	X	X	X	X	VID	X
Flash Hardware Reset	X	H	H	X	X	X	X	High-Z	High-Z	L	X
Boot Block Sector Write Protection	X	X	X	X	X	X	X	X	X	X	L
FCRAM Power Down *8	X	X	L	X	X	X	X	X	X	X	X

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{I}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}. See "■ DC CHARACTERISTICS" for voltage levels.
*1: Other operations except for indicated this column are prohibited.
*2: Do not apply $\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}} \mathrm{s}=\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\mathrm{H}}$ all at once.
*3: FCRAM Output Disable condition should not be kept longer than $1 \mu \mathrm{~s}$.
*4: $\overline{\mathrm{WE}}$ can be V_{IL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}$ at V_{H} initiates the write operations.
*5: FCRAM Byte control at Read operation is not supported.
*6: Also used for the extended sector group protections.
*7: Protect "outermost" 2×8 Kbytes (4 words) on both ends of the boot block sectors.
*8: Power Down mode can be entered from Standby state and all DQ pins are in High-Z state.

FLEXIBLE SECTOR-ERASE ARCHITECTURE on FLASH MEMORY

- Eight 4 K words, and sixty three 32 K words.
- Individual-sector, multiple-sector, or bulk-erase capability.

(Continued)
(Continued)

Sector Address Tables (MB84VD22386EJ)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A_{19}	A18	A_{17}	A16	A15	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 2	SA0	0	0	0	0	0	0	X	X	X	X	000000h to 007FFFh
	SA1	0	0	0	0	0	1	X	X	X	X	008000h to 00FFFFh
	SA2	0	0	0	0	1	0	X	X	X	X	010000h to 017FFFh
	SA3	0	0	0	0	1	1	X	X	X	X	018000h to 01FFFFh
	SA4	0	0	0	1	0	0	X	X	X	X	020000h to 027FFFh
	SA5	0	0	0	1	0	1	X	X	X	X	028000h to 02FFFFh
	SA6	0	0	0	1	1	0	X	X	X	X	030000h to 037FFFh
	SA7	0	0	0	1	1	1	X	X	X	X	038000h to 03FFFFh
	SA8	0	0	1	0	0	0	X	X	X	X	040000h to 047FFFh
	SA9	0	0	1	0	0	1	X	X	X	X	048000h to 04FFFFh
	SA10	0	0	1	0	1	0	X	X	X	X	050000h to 057FFFh
	SA11	0	0	1	0	1	1	X	X	X	X	058000h to 05FFFFh
	SA12	0	0	1	1	0	0	X	X	X	X	060000h to 067FFFh
	SA13	0	0	1	1	0	1	X	X	X	X	068000h to 06FFFFh
	SA14	0	0	1	1	1	0	X	X	X	X	070000h to 077FFFh
	SA15	0	0	1	1	1	1	X	X	X	X	078000h to 07FFFFh
	SA16	0	1	0	0	0	0	X	X	X	X	080000h to 087FFFh
	SA17	0	1	0	0	0	1	X	X	X	X	088000h to 08FFFFh
	SA18	0	1	0	0	1	0	X	X	X	X	090000h to 097FFFh
	SA19	0	1	0	0	1	1	X	X	X	X	098000h to 09FFFFh
	SA20	0	1	0	1	0	0	X	X	X	X	0A0000h to 0A7FFFh
	SA21	0	1	0	1	0	1	X	X	X	X	0A8000h to 0AFFFFh
	SA22	0	1	0	1	1	0	X	X	X	X	0B0000h to 0B7FFFh
	SA23	0	1	0	1	1	1	X	X	X	X	0B8000h to 0BFFFFh
	SA24	0	1	1	0	0	0	X	X	X	X	0C0000h to 0C7FFFh
	SA25	0	1	1	0	0	1	X	X	X	X	0C8000h to 0CFFFFh
	SA26	0	1	1	0	1	0	X	X	X	X	0D0000h to 0D7FFFh
	SA27	0	1	1	0	1	1	X	X	X	X	0D8000h to ODFFFFh
	SA28	0	1	1	1	0	0	X	X	X	X	0E0000h to 0E7FFFh
	SA29	0	1	1	1	0	1	X	X	X	X	0E8000h to 0EFFFFh
	SA30	0	1	1	1	1	0	X	X	X	X	0F0000h to 0F7FFFh
	SA31	0	1	1	1	1	1	X	X	X	X	0F8000h to 0FFFFFh
	SA32	1	0	0	0	0	0	X	X	X	X	100000h to 107FFFh
	SA33	1	0	0	0	0	1	X	X	X	X	108000h to 10FFFFh
	SA34	1	0	0	0	1	0	X	X	X	X	110000h to 117FFFh

(Continued)
(Continued)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A_{19}	A18	A_{17}	A16	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 2	SA35	1	0	0	0	1	1	X	X	X	X	118000h to 11FFFFh
	SA36	1	0	0	1	0	0	X	X	X	X	120000h to 127FFFh
	SA37	1	0	0	1	0	1	X	X	X	X	128000h to 12FFFFh
	SA38	1	0	0	1	1	0	X	X	X	X	130000h to 137FFFh
	SA39	1	0	0	1	1	1	X	X	X	X	138000h to 13FFFFh
	SA40	1	0	1	0	0	0	X	X	X	X	140000h to 147FFFh
	SA41	1	0	1	0	0	1	X	X	X	X	148000h to 14FFFFh
	SA42	1	0	1	0	1	0	X	X	X	X	150000h to 157FFFh
	SA43	1	0	1	0	1	1	X	X	X	X	158000h to 15FFFFh
	SA44	1	0	1	1	0	0	X	X	X	X	160000h to 167FFFh
	SA45	1	0	1	1	0	1	X	X	X	X	168000h to 16FFFFh
	SA46	1	0	1	1	1	0	X	X	X	X	170000h to 177FFFh
	SA47	1	0	1	1	1	1	X	X	X	X	178000h to 17FFFFh
	SA48	1	1	0	0	0	0	X	X	X	X	180000h to 187FFFh
	SA49	1	1	0	0	0	1	X	X	X	X	188000h to 18FFFFh
	SA50	1	1	0	0	1	0	X	X	X	X	190000h to 197FFFh
	SA51	1	1	0	0	1	1	X	X	X	X	198000h to 19FFFFh
	SA52	1	1	0	1	0	0	X	X	X	X	1A0000h to 1A7FFFh
	SA53	1	1	0	1	0	1	X	X	X	X	1A8000h to 1AFFFFF
	SA54	1	1	0	1	1	0	X	X	X	X	1B0000h to 1B7FFFh
	SA55	1	1	0	1	1	1	X	X	X	X	1B8000h to 1BFFFFh
Bank 1	SA56	1	1	1	0	0	0	X	X	X	X	1C0000h to 1C7FFFh
	SA57	1	1	1	0	0	1	X	X	X	X	1C8000h to 1CFFFFh
	SA58	1	1	1	0	1	0	X	X	X	X	1D0000h to 1D7FFFh
	SA59	1	1	1	0	1	1	X	X	X	X	1D8000h to 1DFFFFh
	SA60	1	1	1	1	0	0	X	X	X	X	1E0000h to 1E7FFFh
	SA61	1	1	1	1	0	1	X	X	X	X	1E8000h to 1EFFFFh
	SA62	1	1	1	1	1	0	X	X	X	X	1F0000h to 1F7FFFh
	SA63	1	1	1	1	1	1	0	0	0	X	1F8000h to 1F8FFFh
	SA64	1	1	1	1	1	1	0	0	1	X	1F9000h to 1F9FFFh
	SA65	1	1	1	1	1	1	0	1	0	X	1FA000h to 1FAFFFh
	SA66	1	1	1	1	1	1	0	1	1	X	1FB000h to 1FBFFFh
	SA67	1	1	1	1	1	1	1	0	0	X	1FC000h to 1FCFFFh
	SA68	1	1	1	1	1	1	1	0	1	X	1FD000h to 1FDFFFh
	SA69	1	1	1	1	1	1	1	1	0	X	1FE000h to 1FEFFFh
	SA70	1	1	1	1	1	1	1	1	1	X	1FF000h to 1FFFFFh

Sector Address Tables (MB84VD22396EJ)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 1	SA0	0	0	0	0	0	0	0	0	0	X	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	0	1	X	001000h to 001FFFh
	SA2	0	0	0	0	0	0	0	1	0	X	002000h to 002FFFh
	SA3	0	0	0	0	0	0	0	1	1	X	003000h to 003FFFh
	SA4	0	0	0	0	0	0	1	0	0	X	004000h to 004FFFh
	SA5	0	0	0	0	0	0	1	0	1	X	005000h to 005FFFh
	SA6	0	0	0	0	0	0	1	1	0	X	006000h to 006FFFh
	SA7	0	0	0	0	0	0	1	1	1	X	007000h to 007FFFh
	SA8	0	0	0	0	0	1	X	X	X	X	008000h to 00FFFFh
	SA9	0	0	0	0	1	0	X	X	X	X	010000h to 017FFFh
	SA10	0	0	0	0	1	1	X	X	X	X	018000h to 01FFFFh
	SA11	0	0	0	1	0	0	X	X	X	X	020000h to 027FFFh
	SA12	0	0	0	1	0	1	X	X	X	X	028000h to 02FFFFh
	SA13	0	0	0	1	1	0	X	X	X	X	030000h to 037FFFh
	SA14	0	0	0	1	1	1	X	X	X	X	038000h to 03FFFFh
Bank 2	SA15	0	0	1	0	0	0	X	X	X	X	040000h to 047FFFh
	SA16	0	0	1	0	0	1	X	X	X	X	048000h to 04FFFFh
	SA17	0	0	1	0	1	0	X	X	X	X	050000h to 057FFFh
	SA18	0	0	1	0	1	1	X	X	X	X	058000h to 05FFFFh
	SA19	0	0	1	1	0	0	X	X	X	X	060000h to 067FFFh
	SA20	0	0	1	1	0	1	X	X	X	X	068000h to 06FFFFh
	SA21	0	0	1	1	1	0	X	X	X	X	070000h to 077FFFh
	SA22	0	0	1	1	1	1	X	X	X	X	078000h to 07FFFFh
	SA23	0	1	0	0	0	0	X	X	X	X	080000h to 087FFFh
	SA24	0	1	0	0	0	1	X	X	X	X	088000h to 08FFFFh
	SA25	0	1	0	0	1	0	X	X	X	X	090000h to 097FFFh
	SA26	0	1	0	0	1	1	X	X	X	X	098000h to 09FFFFh
	SA27	0	1	0	1	0	0	X	X	X	X	0A0000h to 0A7FFFh
	SA28	0	1	0	1	0	1	X	X	X	X	0A8000h to OAFFFFh
	SA29	0	1	0	1	1	0	X	X	X	X	OB0000h to 0B7FFFh
	SA30	0	1	0	1	1	1	X	X	X	X	0B8000h to 0BFFFFh
	SA31	0	1	1	0	0	0	X	X	X	X	0C0000h to 0C7FFFh
	SA32	0	1	1	0	0	1	X	X	X	X	0C8000h to 0CFFFFh
	SA33	0	1	1	0	1	0	X	X	X	X	0D0000h to 0D7FFFh
	SA34	0	1	1	0	1	1	X	X	X	X	0D8000h to ODFFFFh
	SA35	0	1	1	1	0	0	X	X	X	X	0E0000h to 0E7FFFh
	SA36	0	1	1	1	0	1	X	X	X	X	0E8000h to 0EFFFFh
	SA37	0	1	1	1	1	0	X	X	X	X	0F0000h to 0F7FFFh
	SA38	0	1	1	1	1	1	X	X	X	X	0F8000h to 0FFFFFh

(Continued)
(Continued)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 2	SA39	1	0	0	0	0	0	X	X	X	X	100000h to 107FFFh
	SA40	1	0	0	0	0	1	X	X	X	X	108000h to 10FFFFh
	SA41	1	0	0	0	1	0	X	X	X	X	110000h to 117FFFh
	SA42	1	0	0	0	1	1	X	X	X	X	118000h to 11FFFFh
	SA43	1	0	0	1	0	0	X	X	X	X	120000h to 127FFFh
	SA44	1	0	0	1	0	1	X	X	X	X	128000h to 12FFFFh
	SA45	1	0	0	1	1	0	X	X	X	X	130000h to 137FFFh
	SA46	1	0	0	1	1	1	X	X	X	X	138000h to 13FFFFh
	SA47	1	0	1	0	0	0	X	X	X	X	140000h to 147FFFh
	SA48	1	0	1	0	0	1	X	X	X	X	148000h to 14FFFFh
	SA49	1	0	1	0	1	0	X	X	X	X	150000h to 157FFFh
	SA50	1	0	1	0	1	1	X	X	X	X	158000h to 15FFFFh
	SA51	1	0	1	1	0	0	X	X	X	X	160000h to 167FFFh
	SA52	1	0	1	1	0	1	X	X	X	X	168000h to 16FFFFh
	SA53	1	0	1	1	1	0	X	X	X	X	170000h to 177FFFh
	SA54	1	0	1	1	1	1	X	X	X	X	178000h to 17FFFFh
	SA55	1	1	0	0	0	0	X	X	X	X	180000h to 187FFFh
	SA56	1	1	0	0	0	1	X	X	X	X	188000h to 18FFFFh
	SA57	1	1	0	0	1	0	X	X	X	X	190000h to 197FFFh
	SA58	1	1	0	0	1	1	X	X	X	X	198000h to 19FFFFh
	SA59	1	1	0	1	0	0	X	X	X	X	1A0000h to 1A7FFFh
	SA60	1	1	0	1	0	1	X	X	X	X	1A8000h to 1AFFFF\%
	SA61	1	1	0	1	1	0	X	X	X	X	1B0000h to 1B7FFFh
	SA62	1	1	0	1	1	1	X	X	X	X	1B8000h to 1BFFFFh
	SA63	1	1	1	0	0	0	X	X	X	X	1C0000h to 1C7FFFh
	SA64	1	1	1	0	0	1	X	X	X	X	1C8000h to 1CFFFFh
	SA65	1	1	1	0	1	0	X	X	X	X	1D0000h to 1D7FFFh
	SA66	1	1	1	0	1	1	X	X	X	X	1D8000h to 1DFFFFh
	SA67	1	1	1	1	0	0	X	X	X	X	1E0000h to 1E7FFFh
	SA68	1	1	1	1	0	1	X	X	X	X	1E8000h to 1EFFFFh
	SA69	1	1	1	1	1	0	X	X	X	X	1F0000h to 1F7FFFh
	SA70	1	1	1	1	1	1	X	X	X	X	1F8000h to 1FFFFFh

Sector Address Tables (MB84VD22387EJ)

Bank	Sector	Sector Address										Address Range
		BankAddress										
		A_{20}	A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 2	SA0	0	0	0	0	0	0	X	X	X	X	000000h to 007FFFh
	SA1	0	0	0	0	0	1	X	X	X	X	008000h to 00FFFFh
	SA2	0	0	0	0	1	0	X	X	X	X	010000h to 017FFFh
	SA3	0	0	0	0	1	1	X	X	X	X	018000h to 01FFFFh
	SA4	0	0	0	1	0	0	X	X	X	X	020000h to 027FFFh
	SA5	0	0	0	1	0	1	X	X	X	X	028000h to 02FFFFh
	SA6	0	0	0	1	1	0	X	X	X	X	030000h to 037FFFh
	SA7	0	0	0	1	1	1	X	X	X	X	038000h to 03FFFFh
	SA8	0	0	1	0	0	0	X	X	X	X	040000h to 047FFFh
	SA9	0	0	1	0	0	1	X	X	X	X	048000h to 04FFFFh
	SA10	0	0	1	0	1	0	X	X	X	X	050000h to 057FFFh
	SA11	0	0	1	0	1	1	X	X	X	X	058000h to 05FFFFh
	SA12	0	0	1	1	0	0	X	X	X	X	060000h to 067FFFh
	SA13	0	0	1	1	0	1	X	X	X	X	068000h to 06FFFFh
	SA14	0	0	1	1	1	0	X	X	X	X	070000h to 077FFFh
	SA15	0	0	1	1	1	1	X	X	X	X	078000h to 07FFFFh
	SA16	0	1	0	0	0	0	X	X	X	X	080000h to 087FFFh
	SA17	0	1	0	0	0	1	X	X	X	X	088000h to 08FFFFh
	SA18	0	1	0	0	1	0	X	X	X	X	090000h to 097FFFh
	SA19	0	1	0	0	1	1	X	X	X	X	098000h to 09FFFFh
	SA20	0	1	0	1	0	0	X	X	X	X	0A0000h to 0A7FFFh
	SA21	0	1	0	1	0	1	X	X	X	X	0A8000h to 0AFFFFh
	SA22	0	1	0	1	1	0	X	X	X	X	0B0000h to 0B7FFFh
	SA23	0	1	0	1	1	1	X	X	X	X	0B8000h to 0BFFFFh
	SA24	0	1	1	0	0	0	X	X	X	X	0C0000h to 0C7FFFh
	SA25	0	1	1	0	0	1	X	X	X	X	0C8000h to 0CFFFFF
	SA26	0	1	1	0	1	0	X	X	X	X	0D0000h to 0D7FFFh
	SA27	0	1	1	0	1	1	X	X	X	X	0D8000h to ODFFFFh
	SA28	0	1	1	1	0	0	X	X	X	X	0E0000h to 0E7FFFh
	SA29	0	1	1	1	0	1	X	X	X	X	0E8000h to 0EFFFFh
	SA30	0	1	1	1	1	0	X	X	X	X	0F0000h to 0F7FFFh
	SA31	0	1	1	1	1	1	X	X	X	X	0F8000h to 0FFFFFh

(Continued)
(Continued)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A_{19}	A_{18}	A17	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 2	SA32	1	0	0	0	0	0	X	X	X	X	100000h to 107FFFh
	SA33	1	0	0	0	0	1	X	X	X	X	108000h to 10FFFFh
	SA34	1	0	0	0	1	0	X	X	X	X	110000h to 117FFFh
	SA35	1	0	0	0	1	1	X	X	X	X	118000h to 11FFFFh
	SA36	1	0	0	1	0	0	X	X	X	X	120000h to 127FFFh
	SA37	1	0	0	1	0	1	X	X	X	X	128000h to 12FFFFh
	SA38	1	0	0	1	1	0	X	X	X	X	130000h to 137FFFh
	SA39	1	0	0	1	1	1	X	X	X	X	138000h to 13FFFFh
	SA40	1	0	1	0	0	0	X	X	X	X	140000h to 147FFFh
	SA41	1	0	1	0	0	1	X	X	X	X	148000h to 14FFFFh
	SA42	1	0	1	0	1	0	X	X	X	X	150000h to 157FFFh
	SA43	1	0	1	0	1	1	X	X	X	X	158000h to 15FFFFh
	SA44	1	0	1	1	0	0	X	X	X	X	160000h to 167FFFh
	SA45	1	0	1	1	0	1	X	X	X	X	168000h to 16FFFFh
	SA46	1	0	1	1	1	0	X	X	X	X	170000h to 177FFFh
	SA47	1	0	1	1	1	1	X	X	X	X	178000h to 17FFFFh
Bank 1	SA48	1	1	0	0	0	0	X	X	X	X	180000h to 187FFFh
	SA49	1	1	0	0	0	1	X	X	X	X	188000h to 18FFFFh
	SA50	1	1	0	0	1	0	X	X	X	X	190000h to 197FFFh
	SA51	1	1	0	0	1	1	X	X	X	X	198000h to 19FFFFh
	SA52	1	1	0	1	0	0	X	X	X	X	1A0000 to 1A7FFFh
	SA53	1	1	0	1	0	1	X	X	X	X	1A8000h to 1AFFFFFh
	SA54	1	1	0	1	1	0	X	X	X	X	1B0000h to 1B7FFFh
	SA55	1	1	0	1	1	1	X	X	X	X	1B8000h to 1BFFFFh
	SA56	1	1	1	0	0	0	X	X	X	X	1C0000h to 1C7FFFh
	SA57	1	1	1	0	0	1	X	X	X	X	1C8000h to 1CFFFFh
	SA58	1	1	1	0	1	0	X	X	X	X	1D0000h to 1D7FFFh
	SA59	1	1	1	0	1	1	X	X	X	X	1D8000h to 1DFFFFh
	SA60	1	1	1	1	0	0	X	X	X	X	1E0000h to 1E7FFFh
	SA61	1	1	1	1	0	1	X	X	X	X	1E8000h to 1EFFFFh
	SA62	1	1	1	1	1	0	X	X	X	X	1F0000h to 1F7FFFh
	SA63	1	1	1	1	1	1	0	0	0	X	1F8000h to 1F8FFFh
	SA64	1	1	1	1	1	1	0	0	1	X	1F9000h to 1F9FFFh
	SA65	1	1	1	1	1	1	0	1	0	X	1FA000h to 1FAFFFh
	SA66	1	1	1	1	1	1	0	1	1	X	1FB000h to 1FBFFFh
	SA67	1	1	1	1	1	1	1	0	0	X	1FC000h to 1FCFFFh
	SA68	1	1	1	1	1	1	1	0	1	X	1FD000h to 1FDFFFh
	SA69	1	1	1	1	1	1	1	1	0	X	1FE000h to 1FEFFFh
	SA70	1	1	1	1	1	1	1	1	1	X	1FF000h to 1FFFFFh

Sector Address Tables (MB84VD22397EJ)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A_{19}	A_{18}	A_{17}	A_{16}	A15	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 1	SA0	0	0	0	0	0	0	0	0	0	X	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	0	1	X	001000h to 001FFFh
	SA2	0	0	0	0	0	0	0	1	0	X	002000h to 002FFFh
	SA3	0	0	0	0	0	0	0	1	1	X	003000h to 003FFFh
	SA4	0	0	0	0	0	0	1	0	0	X	004000h to 004FFFh
	SA5	0	0	0	0	0	0	1	0	1	X	005000h to 005FFFh
	SA6	0	0	0	0	0	0	1	1	0	X	006000h to 006FFFh
	SA7	0	0	0	0	0	0	1	1	1	X	007000h to 007FFFh
	SA8	0	0	0	0	0	1	X	X	X	X	008000h to 00FFFFh
	SA9	0	0	0	0	1	0	X	X	X	X	010000h to 017FFFh
	SA10	0	0	0	0	1	1	X	X	X	X	018000h to 01FFFFh
	SA11	0	0	0	1	0	0	X	X	X	X	020000h to 027FFFh
	SA12	0	0	0	1	0	1	X	X	X	X	028000h to 02FFFFh
	SA13	0	0	0	1	1	0	X	X	X	X	030000h to 037FFFh
	SA14	0	0	0	1	1	1	X	X	X	X	038000h to 03FFFFh
	SA15	0	0	1	0	0	0	X	X	X	X	040000h to 047FFFh
	SA16	0	0	1	0	0	1	X	X	X	X	048000h to 04FFFFh
	SA17	0	0	1	0	1	0	X	X	X	X	050000h to 057FFFh
	SA18	0	0	1	0	1	1	X	X	X	X	058000h to 05FFFFh
	SA19	0	0	1	1	0	0	X	X	X	X	060000h to 067FFFh
	SA20	0	0	1	1	0	1	X	X	X	X	068000h to 06FFFFh
	SA21	0	0	1	1	1	0	X	X	X	X	070000h to 077FFFh
	SA22	0	0	1	1	1	1	X	X	X	X	078000h to 07FFFFh
Bank 2	SA23	0	1	0	0	0	0	X	X	X	X	080000h to 087FFFh
	SA24	0	1	0	0	0	1	X	X	X	X	088000h to 08FFFFh
	SA25	0	1	0	0	1	0	X	X	X	X	090000h to 097FFFh
	SA26	0	1	0	0	1	1	X	X	X	X	098000h to 09FFFFh
	SA27	0	1	0	1	0	0	X	X	X	X	0A0000h to 0A7FFFh
	SA28	0	1	0	1	0	1	X	X	X	X	0A8000h to 0AFFFFh
	SA29	0	1	0	1	1	0	X	X	X	X	0B0000h to 0B7FFFh
	SA30	0	1	0	1	1	1	X	X	X	X	0B8000h to 0BFFFFh
	SA31	0	1	1	0	0	0	X	X	X	X	0C0000h to 0C7FFFh
	SA32	0	1	1	0	0	1	X	X	X	X	0C8000h to 0CFFFFh
	SA33	0	1	1	0	1	0	X	X	X	X	0D0000h to 0D7FFFh
	SA34	0	1	1	0	1	1	X	X	X	X	0D8000h to 0DFFFFh
	SA35	0	1	1	1	0	0	X	X	X	X	0E0000h to 0E7FFFh
	SA36	0	1	1	1	0	1	X	X	X	X	0E8000h to 0EFFFFh
	SA37	0	1	1	1	1	0	X	X	X	X	0F0000h to 0F7FFFh
	SA38	0	1	1	1	1	1	X	X	X	X	0F8000h to 0FFFFFh

(Continued)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A_{19}	A_{18}	A_{17}	A_{16}	A 15	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 2	SA39	1	0	0	0	0	0	X	X	X	X	100000h to 107FFFh
	SA40	1	0	0	0	0	1	X	X	X	X	108000h to 10FFFFh
	SA41	1	0	0	0	1	0	X	X	X	X	110000h to 117FFFh
	SA42	1	0	0	0	1	1	X	X	X	X	118000h to 11FFFFh
	SA43	1	0	0	1	0	0	X	X	X	X	120000h to 127FFFh
	SA44	1	0	0	1	0	1	X	X	X	X	128000h to 12FFFFh
	SA45	1	0	0	1	1	0	X	X	X	X	130000h to 137FFFh
	SA46	1	0	0	1	1	1	X	X	X	X	138000h to 13FFFFh
	SA47	1	0	1	0	0	0	X	X	X	X	140000h to 147FFFh
	SA48	1	0	1	0	0	1	X	X	X	X	148000h to 14FFFFh
	SA49	1	0	1	0	1	0	X	X	X	X	150000h to 157FFFh
	SA50	1	0	1	0	1	1	X	X	X	X	158000h to 15FFFFh
	SA51	1	0	1	1	0	0	X	X	X	X	160000h to 167FFFh
	SA52	1	0	1	1	0	1	X	X	X	X	168000h to 16FFFFh
	SA53	1	0	1	1	1	0	X	X	X	X	170000h to 177FFFh
	SA54	1	0	1	1	1	1	X	X	X	X	178000h to 17FFFFh
	SA55	1	1	0	0	0	0	X	X	X	X	180000h to 187FFFh
	SA56	1	1	0	0	0	1	X	X	X	X	188000h to 18FFFFh
	SA57	1	1	0	0	1	0	X	X	X	X	190000h to 197FFFh
	SA58	1	1	0	0	1	1	X	X	X	X	198000h to 19FFFFh
	SA59	1	1	0	1	0	0	X	X	X	X	1A0000h to 1A7FFFh
	SA60	1	1	0	1	0	1	X	X	X	X	1A8000h to 1AFFFFh
	SA61	1	1	0	1	1	0	X	X	X	X	1B0000h to 1B7FFFh
	SA62	1	1	0	1	1	1	X	X	X	X	1B8000h to 1BFFFFh
	SA63	1	1	1	0	0	0	X	X	X	X	1C0000h to 1C7FFFh
	SA64	1	1	1	0	0	1	X	X	X	X	1C8000h to 1CFFFFh
	SA65	1	1	1	0	1	0	X	X	X	X	1D0000h to 1D7FFFh
	SA66	1	1	1	0	1	1	X	X	X	X	1D8000h to 1DFFFFF
	SA67	1	1	1	1	0	0	X	X	X	X	1E0000h to 1E7FFFh
	SA68	1	1	1	1	0	1	X	X	X	X	1E8000h to 1EFFFFh
	SA69	1	1	1	1	1	0	X	X	X	X	1F0000h to 1F7FFFh
	SA70	1	1	1	1	1	1	X	X	X	X	1F8000h to 1FFFFFh

Sector Address Tables (MB84VD22388EJ)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 2	SA0	0	0	0	0	0	0	X	X	X	X	000000h to 007FFFh
	SA1	0	0	0	0	0	1	X	X	X	X	008000h to 00FFFFh
	SA2	0	0	0	0	1	0	X	X	X	X	010000h to 017FFFh
	SA3	0	0	0	0	1	1	X	X	X	X	018000h to 01FFFFh
	SA4	0	0	0	1	0	0	X	X	X	X	020000h to 027FFFh
	SA5	0	0	0	1	0	1	X	X	X	X	028000h to 02FFFFh
	SA6	0	0	0	1	1	0	X	X	X	X	030000h to 037FFFh
	SA7	0	0	0	1	1	1	X	X	X	X	038000h to 03FFFFh
	SA8	0	0	1	0	0	0	X	X	X	X	040000h to 047FFFh
	SA9	0	0	1	0	0	1	X	X	X	X	048000h to 04FFFFh
	SA10	0	0	1	0	1	0	X	X	X	X	050000h to 057FFFh
	SA11	0	0	1	0	1	1	X	X	X	X	058000h to 05FFFFh
	SA12	0	0	1	1	0	0	X	X	X	X	060000h to 067FFFh
	SA13	0	0	1	1	0	1	X	X	X	X	068000h to 06FFFFh
	SA14	0	0	1	1	1	0	X	X	X	X	070000h to 077FFFh
	SA15	0	0	1	1	1	1	X	X	X	X	078000h to 07FFFFh
	SA16	0	1	0	0	0	0	X	X	X	X	080000h to 087FFFh
	SA17	0	1	0	0	0	1	X	X	X	X	088000h to 08FFFFh
	SA18	0	1	0	0	1	0	X	X	X	X	090000h to 097FFFh
	SA19	0	1	0	0	1	1	X	X	X	X	098000h to 09FFFFh
	SA20	0	1	0	1	0	0	X	X	X	X	0A0000h to 0A7FFFh
	SA21	0	1	0	1	0	1	X	X	X	X	0A8000h to 0AFFFFh
	SA22	0	1	0	1	1	0	X	X	X	X	0B0000h to 0B7FFFh
	SA23	0	1	0	1	1	1	X	X	X	X	0B8000h to 0BFFFFh
	SA24	0	1	1	0	0	0	X	X	X	X	0C0000h to 0C7FFFh
	SA25	0	1	1	0	0	1	X	X	X	X	0C8000h to 0CFFFFh
	SA26	0	1	1	0	1	0	X	X	X	X	0D0000h to 0D7FFFh
	SA27	0	1	1	0	1	1	X	X	X	X	0D8000h to ODFFFFh
	SA28	0	1	1	1	0	0	X	X	X	X	0E0000h to 0E7FFFh
	SA29	0	1	1	1	0	1	X	X	X	X	0E8000h to 0EFFFFh
	SA30	0	1	1	1	1	0	X	X	X	X	0F0000h to 0F7FFFh
	SA31	0	1	1	1	1	1	X	X	X	X	0F8000h to 0FFFFFh

(Continued)
(Continued)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A_{19}	A18	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 1	SA32	1	0	0	0	0	0	X	X	X	X	100000h to 107FFFh
	SA33	1	0	0	0	0	1	X	X	X	X	108000h to 10FFFFh
	SA34	1	0	0	0	1	0	X	X	X	X	110000h to 117FFFh
	SA35	1	0	0	0	1	1	X	X	X	X	118000h to 11FFFFh
	SA36	1	0	0	1	0	0	X	X	X	X	120000h to 127FFFh
	SA37	1	0	0	1	0	1	X	X	X	X	128000h to 12FFFFh
	SA38	1	0	0	1	1	0	X	X	X	X	130000h to 137FFFh
	SA39	1	0	0	1	1	1	X	X	X	X	138000h to 13FFFFh
	SA40	1	0	1	0	0	0	X	X	X	X	140000h to 147FFFh
	SA41	1	0	1	0	0	1	X	X	X	X	148000h to 14FFFFh
	SA42	1	0	1	0	1	0	X	X	X	X	150000h to 157FFFh
	SA43	1	0	1	0	1	1	X	X	X	X	158000h to 15FFFFh
	SA44	1	0	1	1	0	0	X	X	X	X	160000h to 167FFFh
	SA45	1	0	1	1	0	1	X	X	X	X	168000h to 16FFFFh
	SA46	1	0	1	1	1	0	X	X	X	X	170000h to 177FFFh
	SA47	1	0	1	1	1	1	X	X	X	X	178000h to 17FFFFh
	SA48	1	1	0	0	0	0	X	X	X	X	180000h to 187FFFh
	SA49	1	1	0	0	0	1	X	X	X	X	188000h to 18FFFFh
	SA50	1	1	0	0	1	0	X	X	X	X	190000h to 197FFFh
	SA51	1	1	0	0	1	1	X	X	X	X	198000h to 19FFFFh
	SA52	1	1	0	1	0	0	X	X	X	X	1A0000h to 1A7FFFh
	SA53	1	1	0	1	0	1	X	X	X	X	1A8000h to 1AFFFFh
	SA54	1	1	0	1	1	0	X	X	X	X	1B0000h to 1B7FFFh
	SA55	1	1	0	1	1	1	X	X	X	X	1B8000h to 1BFFFF
	SA56	1	1	1	0	0	0	X	X	X	X	1C0000h to 1C7FFFh
	SA57	1	1	1	0	0	1	X	X	X	X	1C8000h to 1CFFFFF
	SA58	1	1	1	0	1	0	X	X	X	X	1D0000h to 1D7FFFh
	SA59	1	1	1	0	1	1	X	X	X	X	1D8000h to 1DFFFFF
	SA60	1	1	1	1	0	0	X	X	X	X	1E0000h to 1E7FFFh
	SA61	1	1	1	1	0	1	X	X	X	X	1E8000h to 1EFFFFh
	SA62	1	1	1	1	1	0	X	X	X	X	1F0000h to 1F7FFFh
	SA63	1	1	1	1	1	1	0	0	0	X	1F8000h to 1F8FFFh
	SA64	1	1	1	1	1	1	0	0	1	X	1F9000h to 1F9FFFh
	SA65	1	1	1	1	1	1	0	1	0	X	1FA000h to 1FAFFFh
	SA66	1	1	1	1	1	1	0	1	1	X	1FB000h to 1FBFFFh
	SA67	1	1	1	1	1	1	1	0	0	X	1FC000h to 1FCFFFF
	SA68	1	1	1	1	1	1	1	0	1	X	1FD000h to 1FDFFFh
	SA69	1	1	1	1	1	1	1	1	0	X	1FE000h to 1FEFFFh
	SA70	1	1	1	1	1	1	1	1	1	X	1FF000h to 1FFFFFh

Sector Address Tables (MB84VD22398EJ)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A_{19}	A18	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 1	SA0	0	0	0	0	0	0	0	0	0	X	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	0	1	X	001000h to 001FFFh
	SA2	0	0	0	0	0	0	0	1	0	X	002000h to 002FFFh
	SA3	0	0	0	0	0	0	0	1	1	X	003000h to 003FFFh
	SA4	0	0	0	0	0	0	1	0	0	X	004000h to 004FFFh
	SA5	0	0	0	0	0	0	1	0	1	X	005000h to 005FFFh
	SA6	0	0	0	0	0	0	1	1	0	X	006000h to 006FFFh
	SA7	0	0	0	0	0	0	1	1	1	X	007000h to 007FFFh
	SA8	0	0	0	0	0	1	X	X	X	X	008000h to 00FFFFh
	SA9	0	0	0	0	1	0	X	X	X	X	010000h to 017FFFh
	SA10	0	0	0	0	1	1	X	X	X	X	018000h to 01FFFFh
	SA11	0	0	0	1	0	0	X	X	X	X	020000h to 027FFFh
	SA12	0	0	0	1	0	1	X	X	X	X	028000h to 02FFFFh
	SA13	0	0	0	1	1	0	X	X	X	X	030000h to 037FFFh
	SA14	0	0	0	1	1	1	X	X	X	X	038000h to 03FFFFh
	SA15	0	0	1	0	0	0	X	X	X	X	040000h to 047FFFh
	SA16	0	0	1	0	0	1	X	X	X	X	048000h to 04FFFFh
	SA17	0	0	1	0	1	0	X	X	X	X	050000h to 057FFFh
	SA18	0	0	1	0	1	1	X	X	X	X	058000h to 05FFFFh
	SA19	0	0	1	1	0	0	X	X	X	X	060000h to 067FFFh
	SA20	0	0	1	1	0	1	X	X	X	X	068000h to 06FFFFh
	SA21	0	0	1	1	1	0	X	X	X	X	070000h to 077FFFh
	SA22	0	0	1	1	1	1	X	X	X	X	078000h to 07FFFFh
	SA23	0	1	0	0	0	0	X	X	X	X	080000h to 087FFFh
	SA24	0	1	0	0	0	1	X	X	X	X	088000h to 08FFFFh
	SA25	0	1	0	0	1	0	X	X	X	X	090000h to 097FFFh
	SA26	0	1	0	0	1	1	X	X	X	X	098000h to 09FFFFh
	SA27	0	1	0	1	0	0	X	X	X	X	0A0000h to 0A7FFFh
	SA28	0	1	0	1	0	1	X	X	X	X	0A8000h to 0AFFFFh
	SA29	0	1	0	1	1	0	X	X	X	X	0B0000h to 0B7FFFh
	SA30	0	1	0	1	1	1	X	X	X	X	0B8000h to 0BFFFFh
	SA31	0	1	1	0	0	0	X	X	X	X	0C0000h to 0C7FFFh
	SA32	0	1	1	0	0	1	X	X	X	X	0C8000h to 0CFFFFFh
	SA33	0	1	1	0	1	0	X	X	X	X	0D0000h to 0D7FFFh
	SA34	0	1	1	0	1	1	X	X	X	X	0D8000h to 0DFFFFF
	SA35	0	1	1	1	0	0	X	X	X	X	0E0000h to 0E7FFFh
	SA36	0	1	1	1	0	1	X	X	X	X	0E8000h to 0EFFFFh
	SA37	0	1	1	1	1	0	X	X	X	X	0F0000h to 0F7FFFh
	SA38	0	1	1	1	1	1	X	X	X	X	0F8000h to 0FFFFFh

(Continued)
(Continued)

Bank	Sector	Sector Address										Address Range
		Bank Address										
		A_{20}	A19	A_{18}	A_{17}	A16	A15	A_{14}	A_{13}	A_{12}	A_{11}	
Bank 2	SA39	1	0	0	0	0	0	X	X	X	X	100000h to 107FFFh
	SA40	1	0	0	0	0	1	X	X	X	X	108000h to 10FFFFh
	SA41	1	0	0	0	1	0	X	X	X	X	110000h to 117FFFh
	SA42	1	0	0	0	1	1	X	X	X	X	118000h to 11FFFFh
	SA43	1	0	0	1	0	0	X	X	X	X	120000h to 127FFFh
	SA44	1	0	0	1	0	1	X	X	X	X	128000h to 12FFFFh
	SA45	1	0	0	1	1	0	X	X	X	X	130000h to 137FFFh
	SA46	1	0	0	1	1	1	X	X	X	X	138000h to 13FFFFh
	SA47	1	0	1	0	0	0	X	X	X	X	140000h to 147FFFh
	SA48	1	0	1	0	0	1	X	X	X	X	148000h to 14FFFFh
	SA49	1	0	1	0	1	0	X	X	X	X	150000h to 157FFFh
	SA50	1	0	1	0	1	1	X	X	X	X	158000h to 15FFFFh
	SA51	1	0	1	1	0	0	X	X	X	X	160000h to 167FFFh
	SA52	1	0	1	1	0	1	X	X	X	X	168000h to 16FFFFh
	SA53	1	0	1	1	1	0	X	X	X	X	170000h to 177FFFh
	SA54	1	0	1	1	1	1	X	X	X	X	178000h to 17FFFFh
	SA55	1	1	0	0	0	0	X	X	X	X	180000h to 187FFFh
	SA56	1	1	0	0	0	1	X	X	X	X	188000 to 18FFFFh
	SA57	1	1	0	0	1	0	X	X	X	X	190000h to 197FFFh
	SA58	1	1	0	0	1	1	X	X	X	X	198000h to 19FFFFh
	SA59	1	1	0	1	0	0	X	X	X	X	1A0000h to 1A7FFFh
	SA60	1	1	0	1	0	1	X	X	X	X	1A8000h to 1AFFFFh
	SA61	1	1	0	1	1	0	X	X	X	X	1B0000h to 1B7FFFh
	SA62	1	1	0	1	1	1	X	X	X	X	1B8000h to 1BFFFFh
	SA63	1	1	1	0	0	0	X	X	X	X	1C0000h to 1C7FFFh
	SA64	1	1	1	0	0	1	X	X	X	X	1C8000h to 1CFFFFh
	SA65	1	1	1	0	1	0	X	X	X	X	1D0000h to 1D7FFFh
	SA66	1	1	1	0	1	1	X	X	X	X	1D8000h to 1DFFFFh
	SA67	1	1	1	1	0	0	X	X	X	X	1E0000h to 1E7FFFh
	SA68	1	1	1	1	0	1	X	X	X	X	1E8000h to 1EFFFFh
	SA69	1	1	1	1	1	0	X	X	X	X	1F0000h to 1F7FFFh
	SA70	1	1	1	1	1	1	X	X	X	X	1F8000h to 1FFFFFh

Sector Group Addresses (MB84VD22386EJ/VD22387EJ/VD22388EJ)
(Top Boot Block)

Sector Group	A_{20}	A_{19}	A_{18}	A 17	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	Sectors
SGA0	0	0	0	0	0	0	X	X	X	SA0
SGA1	0	0	0	0	0	1	X	X	X	SA1 to SA3
					1	0				
					1	1				
SGA2	0	0	0	1	X	X	X	X	X	SA4 to SA7
SGA3	0	0	1	0	X	X	X	X	X	SA8 to SA11
SGA4	0	0	1	1	X	X	X	X	X	SA12 to SA15
SGA5	0	1	0	0	X	X	X	X	X	SA16 to SA19
SGA6	0	1	0	1	X	X	X	X	X	SA20 to SA23
SGA7	0	1	1	0	X	X	X	X	X	SA24 to SA27
SGA8	0	1	1	1	X	X	X	X	X	SA28 to SA31
SGA9	1	0	0	0	X	X	X	X	X	SA32 to SA35
SGA10	1	0	0	1	X	X	X	X	X	SA36 to SA39
SGA11	1	0	1	0	X	X	X	X	X	SA40 to SA43
SGA12	1	0	1	1	X	X	X	X	X	SA44 to SA47
SGA13	1	1	0	0	X	X	X	X	X	SA48 to SA51
SGA14	1	1	0	1	X	X	X	X	X	SA52 to SA55
SGA15	1	1	1	0	X	X	X	X	X	SA56 to SA59
					0	0				
SGA16	1	1	1	1	0	1	X	x	X	SA60 to SA62
					1	0				
SGA17	1	1	1	1	1	1	0	0	0	SA63
SGA18	1	1	1	1	1	1	0	0	1	SA64
SGA19	1	1	1	1	1	1	0	1	0	SA65
SGA20	1	1	1	1	1	1	0	1	1	SA66
SGA21	1	1	1	1	1	1	1	0	0	SA67
SGA22	1	1	1	1	1	1	1	0	1	SA68
SGA23	1	1	1	1	1	1	1	1	0	SA69
SGA24	1	1	1	1	1	1	1	1	1	SA70

Sector Group Addresses (MB84VD22396EJ/VD22397EJ/VD22398EJ) (Bottom Boot Block)

Sector Group	A_{20}	A19	A_{18}	A 17	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	Sectors
SGA0	0	0	0	0	0	0	0	0	0	SA0
SGA1	0	0	0	0	0	0	0	0	1	SA1
SGA2	0	0	0	0	0	0	0	1	0	SA2
SGA3	0	0	0	0	0	0	0	1	1	SA3
SGA4	0	0	0	0	0	0	1	0	0	SA4
SGA5	0	0	0	0	0	0	1	0	1	SA5
SGA6	0	0	0	0	0	0	1	1	0	SA6
SGA7	0	0	0	0	0	0	1	1	1	SA7
					0	1				
SGA8	0	0	0	0	1	0	X	X	X	SA8 to SA10
					1	1				
SGA9	0	0	0	1	X	X	X	X	X	SA11 to SA14
SGA10	0	0	1	0	X	X	X	X	X	SA15 to SA18
SGA11	0	0	1	1	X	X	X	X	X	SA19 to SA22
SGA12	0	1	0	0	X	X	X	X	X	SA23 to SA26
SGA13	0	1	0	1	X	X	X	X	X	SA27 to SA30
SGA14	0	1	1	0	X	X	X	X	X	SA31 to SA34
SGA15	0	1	1	1	X	X	X	X	X	SA35 to SA38
SGA16	1	0	0	0	X	X	X	X	X	SA39 to SA42
SGA17	1	0	0	1	X	X	X	X	X	SA43 to SA46
SGA18	1	0	1	0	X	X	X	X	X	SA47 to SA50
SGA19	1	0	1	1	X	X	X	X	X	SA51 to SA54
SGA20	1	1	0	0	X	X	X	X	X	SA55 to SA58
SGA21	1	1	0	1	X	X	X	X	X	SA59 to SA62
SGA22	1	1	1	0	X	X	X	X	X	SA63 to SA66
SGA23	1	1	1	1	0	0	X	X	X	SA67 to SA69
					0	1				
					1	0				
SGA24	1	1	1	1	1	1	X	X	X	SA70

Flash Memory Autoselect Codes

Type		A_{19} to A_{12}	A_{6}	A_{1}	A_{0}	Code (HEX)
Manufacturer's Code		BA	VIL	VIL	VIL	04h
Device Code	MB84VD22386EJ	BA	VIL	VIL	V_{H}	2255h
	MB84VD22396EJ	BA	VIL	VIL	V_{H}	2256h
	MB84VD22387EJ	BA	VIL	VIL	V_{IH}	2250h
	MB84VD22397EJ	BA	VIL	VIL	V_{IH}	2253h
	MB84VD22388EJ	BA	VIL	VIL	V_{H}	225Ch
	MB84VD22398EJ	BA	VIL	VIL	V_{IH}	225Fh
Sector Group protect		Sector Group Address	VIL	VIH	VIL	01h *

*: Output 01h at protected sector address and output 00h at unprotected sector address.

Flash Memory Command Definitions

Command Sequence	Bus Write Cycles Req'd	First Bus Write Cycle		Second Bus Write Cycle		Third Bus Write Cycle		Fourth Bus Read/Write Cycle		Fifth Bus Write Cycle		Sixth Bus Write Cycle	
		Addr.	Data										
Read/Reset *1	1	XXXh	FOh	-	-	-	-	-	-	-	-	-	-
Read/Reset *1	3	555h	AAh	2AAh	55h	555h	F0h	RA	RD	-	-	-	-
Autoselect	3	555h	AAh	2AAh	55h	$\begin{aligned} & \text { (BA) } \\ & 555 \mathrm{~h} \end{aligned}$	90h	-	-	-	-	-	-
Program	4	555h	AAh	2AAh	55h	555h	A0h	PA	PD	-	-	-	-
Chip Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h
Sector Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	SA	30h
Sector Erase Suspend	1	BA	B0h	-	-	-	-	-	-	-	-	-	-
Sector Erase Resume	1	BA	30h	-	-	-	-	-	-	-	-	-	-
Program Suspend	1	BA	B0h	-	-	-	-	-	-	-	-	-	-
Program Resume	1	BA	30h	-	-	-	-	-	-	-	-	-	-
Set to Fast Mode	3	555h	AAh	2AAh	55h	555h	20h	-	-	-	-	-	-
Fast Program *2	2	XXXh	A0h	PA	PD	-	-	-	-	-	-	-	-
Reset from Fast Mode *2	2	BA	90h	XXXh	F0h*6	-	-	-	-	-	-	-	-
Extended Sector Group Protection *3	4	XXXh	60h	SPA	60h	SPA	40h	SPA	SD	-	-	-	-
Query *4	1	55h	98h	-	-	-	-	-	-	-	-	-	-
Hi-ROM Entry	3	555h	AAh	2AAh	55h	555h	88h	-	-	-	-	-	-
Hi-ROM Program *5	4	555h	AAh	2AAh	55h	555h	A0h	PA	PD	-	-	-	-
Hi-ROM Erase *5	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	HRA	30h
Hi-ROM Exit *5	4	555h	AAh	2AAh	55h	$\begin{gathered} \text { (HRBA) } \\ 555 \mathrm{~h} \end{gathered}$	90h	XXXh	00h	-	-	-	-

*1: Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
*2: This command is valid during Fast Mode.
*3: This command is valid while $\overline{\mathrm{RESET}}=\mathrm{V}_{10}$.
*4: The valid Address is A_{6} to A_{0}.
*5: This command is valid during $\mathrm{Hi}-\mathrm{ROM}$ mode.
*6: The data " 00 h " is also acceptable.
Notes: Address bits A_{20} to $\mathrm{A}_{11}=\mathrm{X}=$ " H " or " L " for all address commands except for Program Address (PA),
Sector Address (SA), and Bank Address (BA).
Bus operations are defined in "■ DEVICE BUS OPERATION".
RA = Address of the memory location to be read.
PA = Address of the memory location to be programmed.
Addresses are latched on the falling edge of the write pulse.
$S A=$ Address of the sector to be erased. The combination of $A_{20}, A_{19}, A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$, and A_{12} will uniquely select any sector.
$\mathrm{BA}=$ Bank address (A_{20} to A_{15})
SPA $=$ Sector group address to be protected. Set sector group address $(S P A)$ and $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$.

HRA = Address of the Hidden-ROM area. MB84VD22386EJ/VD22387EJ/VD22388EJ (Top Boot Type)

Word mode: 1F8000h to 1FFFFFh
Byte mode: 3F0000h to 3FFFFFh
MB84VD22396EJ/VD22397EJ/VD22398EJ (Bottom Boot Type)
Word mode: 000000h to 007FFFh
Byte mode: 000000h to 00FFFFh
HRBA $=$ Bank address of the Hidden-ROM area MB84VD22386EJ/VD22387EJ/VD22388EJ (Top Boot Type)
$\mathrm{A}_{20}=\mathrm{A}_{19}=\mathrm{A}_{18}=\mathrm{A}_{17}=\mathrm{A}_{16}=\mathrm{A}_{15}=1$
MB84VD22396EJ/VD22397EJ/VD22398EJ (Bottom Boot Type)
$\mathrm{A}_{20}=\mathrm{A}_{19}=\mathrm{A}_{18}=\mathrm{A}_{17}=\mathrm{A}_{16}=\mathrm{A}_{15}=0$
$R D=$ Data read from location RA during read operation.
PD = Data to be programmed at location PA.
SD $=$ Sector protection verify data. Output 01 h at protected sector addresses and output 00h at unprotected sector addresses.

The system should generate the following address patterns: 555h or 2AAh to addresses A_{10} to A_{0}

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min	Max	
Storage Temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	TA	-30	+85	${ }^{\circ} \mathrm{C}$
Voltage with Respect to Ground All pins *1	Vin, Vout	-0.3	Vccf +0.3	V
			V cos +0.3	V
Vocf Supply *1	Vccf	-0.2	+3.6	V
Vccs Supply *1	Vocs	-0.2	+3.3	V
RESET *2	Vin	-0.5	+13.0	V
$\overline{\text { WP/ACC *3 }}$	VIN	-0.5	+10.5	V

*1: Minimum DC voltage on input or I/O pins is -0.3 V . During voltage transitions, input or I/O pins may undershoot Vss to -1.0 V for periods of up to 20 ns . Maximum DC voltage on input or I/O pins is V ccf +0.3 V or V cos +0.3 V. During voltage transitions, input or I/O pins may overshoot to $\mathrm{Vccf}+1.0 \mathrm{~V}$ or $\mathrm{Vccs}+1.0 \mathrm{~V}$ for periods of up to 5 ns .
*2: Minimum DC input voltage on RESET pin is -0.5 V . During voltage transitions, $\overline{\operatorname{RESET}}$ pin may undershoot V ss to -2.0 V for periods of up to 20 ns .
Voltage difference between input and supply voltage (VIN-Vccf or V ccs) does not exceed 9.0 V .
Maximum DC input voltage on RESET pin is +13.0 V which may overshoot to +14.0 V for periods of up to 20 ns .
*3: Minimum DC input voltage on $\overline{W P} / A C C$ pin is -0.5 V . During voltage transitions, $\overline{\mathrm{WP}} / \mathrm{ACC}$ pin may undershoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on $\overline{W P} / \mathrm{ACC}$ pin is +10.5 V which may overshoot to +10.5 V for periods of up to 20 ns , when V cff is applied.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Value		
			T_{A}	-30	+85
${ }^{\circ} \mathrm{C}$					
Ambient Temperature	$\mathrm{V}_{\mathrm{ccf}}$	+2.7	+3.3	V	
Vccf Supply Voltage	V ccs	+2.7	+3.1	V	
Vccs Supply Voltage					

Note: Operating ranges define those limits between which the functionality of the device is guaranteed.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

\square DC CHARACTERISTICS

Parameter	Symbol	Conditions		Value			Unit
				Min	Typ	Max	
Input Leakage Current	ILI	$\mathrm{V}_{\text {In }}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\text {cc }}$		-1.0	-	+1.0	$\mu \mathrm{A}$
Output Leakage Current	ILo	Vout $=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\text {cc }}$		-1.0	-	+1.0	$\mu \mathrm{A}$
RESET Inputs Leakage Current	lıit	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{cc} \text { Max, } \\ & \text { RESET }=12.5 \mathrm{~V} \end{aligned}$		-	-	35	$\mu \mathrm{A}$
ACC Input Leakage Current	ILIA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{Cc}} \mathrm{Max}, \\ & \mathrm{WP} / \mathrm{ACC}=\mathrm{V}_{\mathrm{ACC}} \mathrm{Max} \end{aligned}$		-	-	20	mA
Flash Vcc Active Current (Read) *1	lccif	$\begin{aligned} & \overline{\overline{\mathrm{CE}} \mathrm{f}}=\mathrm{V}_{\mathrm{IL}}, \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	tcycle $=5 \mathrm{MHz}$	-	-	18	mA
			tcycle $=1 \mathrm{MHz}$	-	-	7	mA
Flash Vcc Active Current (Program/Erase) *2	Icc2f	$\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		-	-	35	mA
Flash Vcc Active Current (Read-While-Program) *5	Icc3f	$\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		-	-	53	mA
Flash Vcc Active Current (Read-While-Erase) *5	Iccaf	$\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		-	-	53	mA
Flash Vcc Active Current (Erase-Suspend-Program)	Iccsf	$\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$		-	-	35	mA
FCRAM Vcc Active Current	Iccis	$\begin{aligned} & \mathrm{V}_{\mathrm{ccS}}=\mathrm{V}_{\mathrm{ccs}} \mathrm{Max}, \\ & \mathrm{CE1s}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\mathrm{H},}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}}, \text { lout }=0 \mathrm{~mA} \end{aligned}$	trc / twc = Min	-	15	20	mA
			trc / twc = Max	-	2.5	3.0	
Flash Vcc Standby Current	Isbif	$\begin{aligned} & \mathrm{V}_{\mathrm{ccf}}=\mathrm{V}_{\mathrm{ccf}} \mathrm{Max}, \overline{\mathrm{CEf}}=\mathrm{V} \text { ccf } \pm 0.3 \mathrm{~V} \\ & \mathrm{RESET}=\mathrm{V}_{\mathrm{ccf}} \pm 0.3 \mathrm{~V}, \\ & \overline{\mathrm{WP} / A C C}=\mathrm{V}_{\mathrm{ccf}} \pm 0.3 \mathrm{~V} \end{aligned}$		-	1	5	$\mu \mathrm{A}$
Flash Vcc Standby Current ($\overline{\mathrm{RESET}}$)	Isb2f	$\begin{aligned} & \mathrm{Vccf}=\mathrm{V} \operatorname{ccf} \mathrm{Max}, \overline{\mathrm{RESET}}=\mathrm{Vss} \pm 0.3 \mathrm{~V}, \\ & \mathrm{WP} / A C C=\mathrm{V} c \mathrm{cf} \pm 0.3 \mathrm{~V} \end{aligned}$		-	1	5	$\mu \mathrm{A}$
Flash Vcc Current (Automatic Sleep Mode) *3	Isвзf	$\begin{aligned} & \mathrm{V}_{\text {ccf }}=\mathrm{V}_{\text {ccf }} \mathrm{Max}, \overline{\mathrm{CEf}}=\mathrm{V} \text { ss } \pm 0.3 \mathrm{~V} \\ & \overline{\mathrm{RESET}}=\mathrm{V} \text { ccf } \pm 0.3 \mathrm{~V}, \\ & \overline{\mathrm{WP}} / \mathrm{ACC}=\mathrm{V} \text { ccf } \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{ccf}} \pm 0.3 \mathrm{~V} \text { or } \mathrm{Vss} \pm 0.3 \mathrm{~V} \end{aligned}$		-	1	5	$\mu \mathrm{A}$
FCRAM Vcc Standby Current	IsBS	$\begin{aligned} & \mathrm{V}_{\text {ccs }}=\mathrm{V}_{\text {ccs }} \text { Max, } \overline{\mathrm{CE} 1 \mathrm{~s}}=\mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{~V}_{\mathbf{I N}}=\mathrm{V}_{\mathbb{H}} \text { or } \mathrm{V}_{\mathrm{IL},} \text { lout }=0 \mathrm{~mA} \end{aligned}$		-	0.5	1	mA
FCRAM V cc Standby Current	Isb1S	$\begin{aligned} & \mathrm{Vccs}=\mathrm{V} \operatorname{ccs} \mathrm{Max}, \overline{\mathrm{CE} 1 \mathrm{~s}} \geq \mathrm{V} \mathrm{Ccs}-0.2 \mathrm{~V}, \\ & \mathrm{CE} 2 \mathrm{~s} \geq \mathrm{Vccs}-0.2 \mathrm{~V}, \\ & \mathrm{~V} \operatorname{IN} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V} \operatorname{ccs}-0.2 \mathrm{~V} \text {, lout }=0 \mathrm{~mA} \end{aligned}$		-	-	70	$\mu \mathrm{A}$
FCRAM V cc Standby Current	Isb2S	$\begin{aligned} & \text { Vccs }=\mathrm{V} \text { cos Max, } \overline{\mathrm{CE} 1 \mathrm{~s}} \geq \mathrm{V} \text { ccs }-0.2 \mathrm{~V}, \\ & \mathrm{CE} 2 \mathrm{~s} \geq \mathrm{Vccs}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \text { Cycle time }=\text { trc } \text { Min, lout }=0 \mathrm{~mA} \end{aligned}$		-	-	5 *	mA
FCRAM Vcc Power Down Current	IpdS	$\begin{aligned} & \mathrm{V}_{\mathrm{ccs}}=\mathrm{V} \operatorname{ccs} \mathrm{Max}, \\ & \mathrm{VIN} \geq \mathrm{V} \text { ccf }-0.2 \mathrm{~V} \text { or } \mathrm{VIN} \leq 0.2 \mathrm{~V} \\ & \mathrm{CE} 2 \mathrm{~s} \leq 0.2 \mathrm{~V}, \text { lout }=0 \mathrm{~mA} \end{aligned}$		-	-	10	$\mu \mathrm{A}$

(Continued)
(Continued)

Parameter	Symbol	Conditions	Value			Unit
			Min	Typ	Max	
Input Low Level	VIL	-	-0.3	-	0.4	V
Input High Level	VIH	-	2.3	-	Vcc+0.3	V
Voltage for Autoselect and Sector Protection (RESET) *4	VID	-	11.5	-	12.5	V
Voltage for $\overline{\mathrm{WP}} / \mathrm{ACC}$ Sector Protection/Unprotection and Program Acceleration	Vacc	-	8.5	9.0	9.5	V
FCRAM Output Low Level	VoL	Vccs $=$ V cos Min, lol $=1.0 \mathrm{~mA}$	-	-	0.4	V
FCRAM Output High Level	Vон	$\mathrm{Vccs}=\mathrm{Vccs} \mathrm{Min}$, loh $=-0.5 \mathrm{~mA}$	2.1	-	-	V
Flash Output Low Level	VoL	$\mathrm{V}_{\text {ccf }}=\mathrm{V}_{\text {ccf }} \mathrm{Min}$, lol $=4.0 \mathrm{~mA}$	-	-	0.45	V
Flash Output High Level	Vон	$\mathrm{V}_{\text {ccf }}=\mathrm{V}$ ccf Min , $\mathrm{IoH}=-0.1 \mathrm{~mA}$	$\begin{gathered} \hline \text { Vccf- } \\ 0.4 \end{gathered}$	-	-	V
Low Vcc Lock-Out Voltage	Vıко	-	2.3	-	2.5	V

*1: The Icc current listed includes both the DC operating current and the frequency dependent component.
*2: Icc active while Embedded Algorithm (program or erase) is in progress.
*3: Automatic sleep mode enables the low power mode when address remains stable for 150 ns .
*4: Applicable for only Vcc applying.
*5: Embedded Algorithm (program or erase) is in progress. (@5MHz)
*6: Isb2S depends on Vin cycle time. Refer to "■ APPENDIX".

- AC CHARACTERISTICS

- CE Timing

Parameter		Symbol		Condition	Value	
	JEDEC	Standard		Min	Max	
$\overline{\text { CE Recover Time }}$	-	tccr	-	0	-	ns
$\overline{\mathrm{CE}}$ Hold Time	-	tchold	-	3	-	ns

- Timing Diagram for alternating FCRAM to Flash

- Read Only Operations Characteristics (Flash)

Parameter	Symbol		Conditions	Value		Unit
	JEDEC	Standard		Min	Max	
Read Cycle Time	tavav	trc	-	85	-	ns
Address to Output Delay	tavav	$t_{\text {Acc }}$	$\begin{aligned} & \overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{IL}} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	85	ns
Chip Enable to Output Delay	telov	tce	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$	-	85	ns
Output Enable to Output Delay	tglav	toe	-	-	35	ns
Chip Enable to Output High-Z	tehqz	tDF	-	-	30	ns
Output Enable to Output High-Z	tghaz	tbF	-	-	30	ns
Output Hold Time From Addresses, CEf or OE, Whichever Occurs First	taxax	toн	-	0	-	ns
$\overline{\text { RESET Pin Low to Read Mode }}$	-	tready	-	-	20	$\mu \mathrm{s}$

Note: Test Conditions- Output Load: 1 TTL gate and 30 pF
Input rise and fall times: 5 ns
Input pulse levels: 0.0 V or V_{cc}
Timing measurement reference level
Input: $0.5 \times \mathrm{Vcc}$
Output: $0.5 \times \mathrm{V}$ cc

- Read Cycle (Flash)

- Hardware Reset/Read Operation Timing Diagram (Flash)

- Erase/Program Operations Characteristics (Flash)

Parameter		Symbol		Value			Unit
		JEDEC	Standard	Min	Typ	Max	
Write Cycle Time		tavav	two	85	-	-	ns
Address Setup Time ($\overline{\mathrm{WE}}$ to Addr.)		tavwL	tAs	0	-	-	ns
Address Setup Time to $\overline{\mathrm{CE}} \mathrm{L}$ Low During Toggle Bit Polling		-	taso	15	-	-	ns
		twlax	taH	45	-	-	ns
Address Hold Time from $\overline{\mathrm{CE}} \mathrm{f}$ or $\overline{\mathrm{OE}}$ High During Toggle Bit Polling		-	taht	0	-	-	ns
Data Setup Time		tovwh	tos	35	-	-	ns
Data Hold Time		twhox	toh	0	-	-	ns
Output Enable Setup Time		-	toes	0	-	-	ns
Output Enable Hold Time	Read	-	toeн	0	-	-	ns
	Toggle and $\overline{\text { Data }}$ Polling			10	-	-	ns
$\overline{\overline{C E}} \mathrm{f}$ High During Toggle Bit Polling		-	tcEph	20	-	-	ns
$\overline{\text { OE High During Toggle Bit Polling }}$		-	toEph	20	-	-	ns
Read Recover Time Before Write ($\overline{\mathrm{OE}}$ to $\overline{\mathrm{CE}}$)		taheL	taheL	0	-	-	ns
Read Recover Time Before Write ($\overline{\mathrm{OE}}$ to $\overline{\mathrm{WE}}$)		tghwL	tghwL	0	-	-	ns
		twLeL	tws	0	-	-	ns
$\overline{\mathrm{CE}} \mathrm{f}$ Setup Time ($\overline{\mathrm{WE}}$ to $\overline{\mathrm{CE}} \mathrm{f}$)		telw	tcs	0	-	-	ns
$\overline{\text { WE }}$ Hold Time ($\overline{\mathrm{CE}} \mathrm{f}$ to $\overline{\mathrm{WE}}$)		terwh	twh	0	-	-	ns
$\overline{\mathrm{CE}} \mathrm{f}$ Hold Time ($\overline{\mathrm{WE}}$ to $\overline{\mathrm{CE}}$)		twHEH	tch	0	-	-	ns
Write Pulse Width		twLwh	twp	35	-	-	ns
$\overline{\text { CEf }}$ Pulse Width		teLeh	tcp	35	-	-	ns
Write Pulse Width High		twhwL	twph	30	-	-	ns
$\overline{\text { CEf Pulse Width High }}$		tehel	tcP	30	-	-	ns
Word Programming Operation		twHwht	twHWH1	-	16	-	$\mu \mathrm{s}$
Sector Erase Operation *1		twHWHz	twHwH2	-	1	-	s

(Continued)
(Continued)

Parameter	Symbol		Value			Unit
	JEDEC	Standard	Min	Typ	Max	
Vccf Setup Time	-	tvcs	50	-	-	$\mu \mathrm{s}$
Voltage Transition Time *2	-	tvLht	4	-	-	$\mu \mathrm{s}$
Rise Time to VID *2	-	tvidr	500	-	-	ns
Rise Time to V Acc	-	tvaccr	500	-	-	ns
Recover Time from RY/ $\overline{\mathrm{BY}}$	-	trB	0	-	-	ns
$\overline{\text { RESET Pulse Width }}$	-	trp	500	-	-	ns
Delay Time from Embedded Output Enable	-	teoe	-	-	85	ns
$\overline{\text { RESET }}$ Hold Time Before Read	-	tri	200	-	-	ns
Program/Erase Valid to RY/ $\overline{\mathrm{BY}}$ Delay	-	tbusy	-	-	90	ns
Erase Time-out Time *3	-	trow	50	-	-	$\mu \mathrm{s}$
Erase Suspend Transition Time *4	-	tspd	-	-	20	$\mu \mathrm{s}$

*1: This does not include the preprogramming time.
*2: This timing is for Sector Protection Operation.
*3: The time between writes must be less than "trow" otherwise that command will not be accepted and erasure will start. A time-out or "trow" from the rising edge of last $\overline{\mathrm{CEf}}$ or $\overline{\mathrm{WE}}$ whichever happens first will initiate the execution of the Sector Erase command(s).
*4: When the Erase Suspend command is written during the Sector Erase operation, the device will take a maximum of "tspo" to suspend the erase operation.

- Write Cycle (WE control) (Flash)

Notes: • PA is an address of the memory location to be programmed.

- PD is data to be programmed at the word address.
- $\overline{D Q}_{7}$ is the output of the data complement written to the device.
- Dout is the data output written to the device.
- Figure indicates the last two out of four bus cycle sequence.
- Write Cycle (CEf control) (Flash)

Notes: - PA is an address of the memory location to be programmed.

- PD is data to be programmed at the word address.
- $\overline{\mathrm{DQ}}_{7}$ is the output of the data complement written to the device.
- Dout is the data output written to the device.
- Figure indicates the last two out of four bus cycle sequence.
- AC Waveforms Chip/Sector Erase Operations (Flash)

- AC Waveforms for Data Polling during Embedded Algorithm Operations (Flash)

- AC Waveforms for Toggle Bit during Embedded Algorithm Operations (Flash)

- Back-to-back Read/Write Timing Diagram (Flash)

Note: This is an example of Read for Bank 1 and Embedded Algorithm (program) for Bank 2.
BA1: Address of Bank 1.
BA2: Address of Bank 2.

- RY/BY Timing Diagram during Write/Erase Operations (Flash)

- RY/ $\overline{\mathbf{B Y}}$ Timing Diagram during Write/Erase Operations (Flash)

- Temporary Sector Group Unprotection (Flash)

- Acceleration Mode Timing Diagram (Flash)

- Extended Sector Group Protection (Flash)

SPAX: Sector Group Address to be protected
SPAY : Next Sector Group Address to be protected
TIME-OUT : Time-Out window $=250 \mu \mathrm{~s}$ (Min)

- READ OPERATION (FCRAM)

Parameter	Symbol	Value		Unit	Notes
		Min	Max		
Read Cycle Time	trc	90	-	ns	
Chip Enable Access Time	tce	-	85	ns	*1, *3
Output Enable Access Time	toe	-	45	ns	*1
Chip Enable Access Time	t_{AA}	-	85	ns	*1, *4
Output Data Hold Time	tor	5	-	ns	*1
$\overline{\mathrm{CE}}$'s Low to Output Low-Z	tclz	5	-	ns	*2
$\overline{\text { OE Low to Output Low-Z }}$	tolz	0	-	ns	*2
$\overline{\text { CE1s }}$ High to Output High-Z	tchz	-	30	ns	*2
$\overline{\text { OE High to Output High-Z }}$	tohz	-	25	ns	*2
Address Setup Time to $\overline{\mathrm{CE}}$'s Low	tasc	-5	-	ns	*5
Address Setup Time to $\overline{\mathrm{OE}}$	taso	45	-	ns	*3, *6
	taso[ABS]	10	-	ns	*7
Address Invalid Time	$\mathrm{tax}^{\text {a }}$	-	5	ns	*4
$\overline{\mathrm{CE}}$'s Low to Address Hold Time	tclah	90	-	ns	*4
$\overline{\text { OE Low to Address Hold Time }}$	tolah	45	-	ns	*4, *8
$\overline{\mathrm{CE} 1} \mathrm{~s}$ High to Address Hold Time	tснан	-5	-	ns	
$\overline{\text { OE High to Address Hold Time }}$	Тонан	-5	-	ns	
$\overline{\mathrm{CE}}$ 1s Low to $\overline{\mathrm{OE}}$ Low Delay Time	tclol	45	1000	ns	*4, *6, *8, *9
$\overline{\text { OE Low to } \overline{C E 1 s} \text { High Delay Time }}$	tolch	45	-	ns	*8
$\overline{\text { CE1s High Pulse Width }}$	tcp	20	-	ns	
$\overline{\text { OE High Pulse Width }}$	top	45	1000	ns	*6, *8, *9
	top[ABS]	20	-	ns	*7

*1: The output load is 30 pF .
*2: The output load is 5 pF .
*3: The tce is applicable if $\overline{\mathrm{OE}}$ is brought to Low before $\overline{\mathrm{CE}}$ s goes Low and is also applicable if actual value of both or either taso or tclol is shorter than specified value.
*4: Applicable only to A_{0} and A_{1} when both $\overline{C E 1}$ s and $\overline{\mathrm{OE}}$ are kept at Low for the address access.
*5: Applicable if $\overline{\mathrm{OE}}$ is brought to Low before $\overline{\mathrm{CE}}$ s goes Low.
*6: The taso, tclol (Min) and top (Min) are reference values when the access time is determined by toe.
If actual value of each parameter is shorter than specified minimum value, toe becomes longer by the amount of subtracting actual value from specified minimum value.
For example, if actual $t_{A s o}, t_{A s o}$ (actual), is shorter than specified minimum value, $\mathrm{t}_{\mathrm{AsO}}$ (Min), during $\overline{\mathrm{OE}}$ control access (i.e., $\overline{\mathrm{CE}}$ s stays Low), the toe becomes toe (Max) $+\mathrm{t}_{\text {Aso }}$ (Min) $-\mathrm{t}_{\text {Aso }}$ (actual) .
*7: The $t_{A S O[A B S]}$ and top[ABS] are the absolute minimum values during $\overline{\mathrm{OE}}$ control access.
*8: If actual value of either tclol or top is shorter than specified minimum value, both tolah and tolch become trc (Min) - tclol (actual) or trc (Min) - top (actual).
*9: Maximum value is applicable if $\overline{\mathrm{CE}}$ s is kept at Low.

- WRITE OPERATION (FCRAM)

Parameter	Symbol	Value		Unit	Notes
		Min	Max		
Write Cycle Time	twc	90	-	ns	*1
Address Setup Time	$\mathrm{tas}_{\text {A }}$	0	-	ns	*2
Address Hold Time	$\mathrm{taH}^{\text {}}$	45	-	ns	*2
$\overline{\text { CE1s }}$ Write Setup Time	tcs	0	1000	ns	
$\overline{\mathrm{CE}}$ 1s Write Hold Time	tch	0	1000	ns	
$\overline{\text { WE S Setup Time }}$	tws	0	-	ns	
$\overline{\text { WE Hold Time }}$	twh	0	-	ns	
$\overline{\overline{L B}}$ s and $\overline{\text { UB }}$ s Setup Time	tBS	0	-	ns	
$\overline{\overline{L B}}$ and $\overline{\text { UBs Hold Time }}$	tBH	-5	-	ns	
$\overline{\text { OE Setup Time }}$	toes	0	1000	ns	*3
$\overline{\text { OE Hold Time }}$	toen	45	1000	ns	*3, *4
	toen[ABS]	20	-	ns	*5
$\overline{\mathrm{OE}}$ High to $\overline{\mathrm{CE}} 1 \mathrm{~s}$ Low Setup Time	toнcL	-3	-	ns	*6
$\overline{\text { OE High to Address Hold Time }}$	Тонан	-5	-	ns	*7
$\overline{\mathrm{CE} 1}$ s Write Pulse Width	tcw	60	-	ns	*1, *8
$\overline{\text { WE Write Pulse Width }}$	twp	60	-	ns	*1, *8
$\overline{\text { CE1s Write Recovery Time }}$	twrc	15	-	ns	*1, *9
$\overline{\text { WE Write Recovery Time }}$	twr	15	1000	ns	*1, *3, *9
Data Setup Time	tos	20	-	ns	
Data Hold Time	toh	0	-	ns	
$\overline{\mathrm{CE} 1} \mathrm{~s}$ High Pulse Width	tcp	20	-	ns	*9

*1: Minimum value must be equal or greater than the sum of actual tow (or twp) and twRc (or twr).
*2: New write address is valid from either $\overline{\mathrm{CE}}$ s or $\overline{\mathrm{WE}}$ that is brought to High.
*3: Maximum value is applicable if $\overline{\mathrm{CE}}$ s is kept at Low and both $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$ are kept at High.
*4: The to巨н is specified from end of twc (Min) , and is a reference value when access time is determined by toE. If actual value is shorter than specified minimum value, to becomes longer by the amount of subtracting actual value from specified minimum value.
*5: The toen[ABs] is the absolute minimum value if write cycle is terminated by $\overline{\mathrm{WE}}$ and $\overline{\mathrm{CE}}$ s stays Low.
*6: toнсь (Min) must be satisfied if read operation is not performed prior to write operation.
In case $\overline{\mathrm{OE}}$ is disabled after tohcl (Min), $\overline{\mathrm{WE}}$ Low must be asserted after trc (Min) from $\overline{\mathrm{CE}}$ s Low. In other words, read operation is initiated if toнcL (Min) is not satisfied.
*7: Applicable if $\overline{\mathrm{CE}}$ s stays Low after read operation.
*8: tcw and twp are applicable if write operation is initiated by $\overline{\mathrm{CE}}$ s and $\overline{\mathrm{WE}}$, respectively.
*9: twrc and twr are applicable if write operation is terminated by CE1s and WE, respectively.
The twr (Min) can be ignored if $\overline{\mathrm{CE}}$ s s is brought to High together or after $\overline{\mathrm{WE}}$ is brought to High. In such a case, the tcp (Min) must be satisfied.

- POWER DOWN PARAMETER (FCRAM)

Parameter	Symbol	Value		Unit	Note
		Max			
CE2s Low Setup Time for Power Down Entry	tcsp	10	-	ns	
CE2s Low Hold Time after Power Down Entry	tc2LP	100	-	ns	
CE1s High Hold Time following CE2s High after Power Down Exit	tcнн	350	-	$\mu \mathrm{s}$	
CE1s High Setup Time following CE2s High after Power Down Exit	tchs	10	-	ns	

- OTHER TIMING PARAMETER (FCRAM)

Parameter	Symbol	Value		Unit	Note
		Min	Max		
$\overline{\text { CE1s High to OE Invalid Time for Standby Entry }}$	tcнох	20	-	ns	
$\overline{\text { CE1s High to WE Invalid Time for Standby Entry }}$	tcнwx	20	-	ns	${ }^{*} 1$
CE2s Low Hold Time after Power-up	tcгLH	50	-	$\mu \mathrm{s}$	${ }^{*} 2$
CE2s High Hold Time after Power-up	tcгнL	50	-	$\mu \mathrm{s}$	${ }^{*} 3$
CE1s High Hold Time following CE2s High after Power-up	tснH	350	-	$\mu \mathrm{s}$	${ }^{*} 2$
Input Transition Time	tт	1	25	ns	${ }^{*} 4$

*1: It may write date into any address location tchwx is not satisfied.
*2: Must satisfy tснн (Min) after tczLн (Min).
*3: Requires Power Down mode entry and exit after tcгнL.
*4: The Input Transition Time (t) at AC testing is 5 ns as shown below. If actual t t is longer than 5 ns , it may violate AC specification of some timing parameters.

- AC TEST CONDITIONS (FCRAM)

Parameter	Symbol	Condition	Value	Unit	Note
Input High Level	V_{H}	$\mathrm{V}_{\mathrm{CCS}}=2.7 \mathrm{~V}$ to 3.1 V	2.3	V	
Input Low Level	V_{IL}	$\mathrm{V}_{\mathrm{CCS}}=2.7 \mathrm{~V}$ to 3.1 V	0.4	V	
Input Timing Measurement Level	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\mathrm{CCS}}=2.7 \mathrm{~V}$ to 3.1 V	1.3	V	
Input Transition Time	$\mathrm{t} T$	Between V_{IL} and V_{H}	5	ns	

- READ Timing \#1 (으 Control Access) (FCRAM)

Note : CE2s and $\overline{\mathrm{WE}}$ must be High during the entire read cycle.

- READ Timing \#2 (드s Control Access) (FCRAM)

Note : CE2s and WE must be High during the entire read cycle.

- READ Timing \#3 (Address Access after OE Control Access) (FCRAM)

Note : CE2s and $\overline{\mathrm{WE}}$ must be High during the entire read cycle.

- READ Timing \#4 (Address Access after CE1s Control Access) (FCRAM)

Note : CE2s and $\overline{\text { WE }}$ must be High during the entire read cycle.

- WRITE Timing \#1 (CE1s Control) (FCRAM)

Note : CE2s must be High during the write cycle.

- WRITE Timing \#2-1 (产E Control, Single Write Operetion) (FCRAM)

Note : CE2s must be High during the write cycle.

- WRITE Timing \#2 (产E Control, Continuous Write Operetion) (FCRAM)

Note : CE2s must be High during the write cycle.

- READ/WRITE Timing \#1-1 (CE1s Control) (FCRAM)

Note : Write address is vaild from either $\overline{\mathrm{CE}}$ s or $\overline{\mathrm{WE}}$ of the last falling edge.

- READ/WRITE Timing \#1-2 (CE1s Control) (FCRAM)

Note : toeн is specified from the time satisfied both twre and twr (Min).

- READ ($\overline{\text { OE }}$ Control) /WRITE ($\overline{\text { WE }}$ Control) Timing \#2-1 (FCRAM)

Note : $\overline{\mathrm{CE}}$ s can be tied to Low for $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$ controlled operation.
When $\overline{\mathrm{CE}}$'s is tied to Low, output is exclusively controlled by $\overline{\mathrm{OE}}$.

- READ ($\overline{\mathrm{OE}}$ Control) / WRITE ($\overline{\mathrm{WE}}$ Control) Timing \#2-2

Note : $\overline{\mathrm{CE}}$ s can be tied to Low for $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$ controlled operation.
When $\overline{\mathrm{CE}}$'s is tied to Low, output is exclusively controlled by $\overline{\mathrm{OE}}$.

- POWER DOWN Timing (FCRAM)

- Standby Entry Timing after Read or Write (FCRAM)

Note: Both tснох and tснwх define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes trc (Min) period from either last address transition of A0 and A1, or $\overline{\mathrm{CE}} 1 \mathrm{~s}$ Low to High transition.

- POWER-UP Timing 1 (FCRAM)

*: It is recommended to keep CE2s at Low during Vccs power-up.
tсzıн specifies after Vccs reaches specified minimum level.
- POWER-UP Timing 2 (FCRAM)

Note : tčLH specifies from CE2s Low to High transition after Vccs reaches specified minimum level. CE1s must be brought to High prior to or together with CE2s Low to High transition.

■ ERASE AND PROGRAMMING PERFORMANCE (Flash)

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Sector Erase Time	-	1	10	s	Excludes programming time prior to erasure
Word Programming Time	-	16	360	$\mu \mathrm{~s}$	Excludes system-level overhead
Chip Programming Time	-	-	200	s	Excludes system-level overhead
Erase/Program Cycle	100,000	-	-	cycle	

■ DATA RETENTION CHARACTERISTICS (FCRAM)

Parameter	Symbol	Conditions	Value			Unit
			Min	Typ	Max	
Vccs Data Retention Supply Voltage	Vor	$\begin{aligned} & \overline{\mathrm{CE} 1 \mathrm{~s}}=\mathrm{CE} 2 \mathrm{~s} \geq \mathrm{V}_{\mathrm{ccs}}-0.2 \mathrm{~V} \text { or }, \\ & \overline{\mathrm{CE} 1 \mathrm{~s}}=\mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{1+} \end{aligned}$	2.3	-	3.1	V
Vccs Data Retention Supply Current	IDR	$\begin{aligned} & 2.3 \mathrm{~V} \leq \mathrm{V}_{c c s} \leq 2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathbb{I}}=\mathrm{V}_{\mathbf{H}}{ }^{*} \text { or } \mathrm{V}_{\text {IL }} \\ & \mathrm{CE} 1 \mathrm{~s}=\mathrm{CE} 2 \mathrm{~s}=\mathrm{V}_{\mathbf{H}}{ }^{*}, \text { lout }=0 \mathrm{~mA} \end{aligned}$	-	0.5	1	mA
	lor1	$\begin{aligned} & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{ccs}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{N}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CCS}}-0.2 \mathrm{~V}, \\ & \mathrm{CE} 1 \mathrm{~s}=\mathrm{CE} 2 \mathrm{~V} \geq \mathrm{V} \text { ccs }-0.2 \mathrm{~V}, \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$	-	-	70	$\mu \mathrm{A}$
Data Retention Setup Time	tors	$2.7 \mathrm{~V} \leq \mathrm{V} \cos \leq 3.1 \mathrm{~V}$ at data retention entry	0	-	-	ns
Data Retention Recovery Time	torr	$2.7 \mathrm{~V} \leq \mathrm{V} \operatorname{ccs} \leq 3.1 \mathrm{~V}$ after data retention	90	-	-	ns
Vcos Voltage Transition Time	$\Delta \mathrm{V} / \Delta \mathrm{t}$	-	0.5	-	-	$\mathrm{V} / \mathrm{\mu s}$

*: $2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{H}} \leq \mathrm{V}_{\mathrm{CcS}}+0.3 \mathrm{~V}$

- Data Retention Timing

*: $2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{H}} \leq \mathrm{V}_{\text {ccs }}+3 \mathrm{~V}$

PIN CAPACITANCE

Parameter	Symbol	Condition	Value		Unit
			Typ	Max	
Input Capacitance	Cin	V IN $=0 \mathrm{~V}$	11	14	pF
Output Capacitance	Cout	Vout $=0 \mathrm{~V}$	12	16	pF
Control Pin Capacitance	CIn2	$\mathrm{V}_{1 \times}=0 \mathrm{~V}$	14	16	pF
$\overline{\text { WP/ACC Pin Capacitance }}$	Cins	$\mathrm{V} \mathrm{IN}^{2}=0 \mathrm{~V}$	21.5	26	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

HANDLING OF PACKAGE

Please handle this package carefully since the sides of package are created acute angles.

CAUTION

- The high voltage (V_{ID}) cannot apply to address pins and control pins except $\overline{\text { RESET. }}$

Exception is when autoselect and sector protect function are used. Then the high voltage (VID) can be applied to RESET.

- Without the high voltage (VID) , sector protection can be achieved by using "Extended Sector Group Protection" command.

- ORDERING INFORMATION

MB84VD2238

APPENDIX

- Isb2S vs. Vin Cycle time

PACKAGE DIMENSION

```
71-pin plastic FBGA
    (BGA-71P-M02)
```


© 2000 FUJTSU LIMTED B71002S-1c-1

FUJITSU LIMITED

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: Note : These guarantee both FCRAM and Flash at 85 ns Access Cycle.

